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We define a class of dynamical maps on the quasi-local algebra of a quantum 
spin system, which are quantum analoges of probabilistic cellular automata. We 
develop criteria for such a system to be ergodic, i.e., to possess a unique 
invariant state. Intuitively, ergodicity obtains if the local transition operators 
exhibit sufficiently large disorder. The ergodicity criteria also imply bounds for 
the exponential decay of correlations in the unique invariant state. The main 
technical tool is a quantum version of oscillation norms, defined in the classical 
case as the sum over all sites of the variations of an observable with respect to 
local spin flips. 
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1. I N T R O D U C T I O N  

A probabi l i s t i c  cel lular  a u t o m a t o n  (PCA) ,  ~1-31 or  in te rac t ing  part icle  
system, ~4~ can  be regarded as an  infinite col lect ion of  cells or  particles,  
where  each cell or  part ic le  can  take  on  a finite n u m b e r  of  states. The  dis- 
crete t ime evo lu t ion  of  such systems is de t e rmined  by  a statist ical  law 
accord ing  to which,  in a n y  given conf igura t ion  at t ime t, all cells are 
s imu l t aneous ly  a n d  independen t ly  upda ted  to the conf igura t ion  at t ime 
t + 1. O n e  of  the basic  ques t ions  conce rn ing  such systems is ergodicity,  i.e., 
the un iqueness  of  the s t a t iona ry  p robab i l i ty  measure  on  conf igurat ions .  In  
this article we will i n t roduce  a q u a n t u m  ana log  of this s t ructure ,  and  we 
will also prove  an  ana log  of  we l l -known  cri teria by  which ergodici ty  of a 
P C A  can  be decided in te rms of the local t r ans i t ion  probabi l i t ies .  ~4"-'' 1~ 
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Our definition of quantum cellular automata (QCA) is an abstraction 
of a structure that arose in the project of generalizing the construction of 
"finitely correlated states" on quantum spin chains 15" 6) to two-dimensional 
systems, tTI In this context the ergodicity of the QCA is equivalent to the 
state on the two-dimensional system being uniquely determined by local 
data, independent of boundary conditions. The term "quantum cellular 
automaton" has been used previously by some other authorsJ 8-~~ In the 
cases we are aware of, however, it is used for a structure on the Hilbert 
space level, and not on the level of observables. Thus in ref. 8 the classical 
states at each site are simply replaced by the values of the wave function 
at that site, and the dynamics is just a discrete Schr6dinger equation with 
non-self-adjoint Hamiltonian, made nonlinear by keeping the normaliza- 
tion fixed. There is some interest in quantum cellular automata also from 
the point of view of nanometer-scale computers, for which quantum effects 
are expected to be relevant. "~" 12. lO) The evolution of the automata con- 
sidered in this paper is in general nonunitary, i.e., pure states may evolve 
into mixed states. This might be an interesting addition to the structure of 
"quantum computers", as studied by a number of authors recently (see 
ref. 13, and references cited therein). 

The main technical contribution of this article is the introduction 
of a general class of "oscillation norms" on quantum lattice systems. We 
believe this to be a useful tool of independent interest, and therefore 
include proofs of the basic general properties of such norms. They 
generalize a classical notion, which also was a principal tool for the proof 
of the ergodicity criteria in refs. 2, 1, and 14. A special case of such a norm 
in the quantum case was already used extensively by MatsuiJ~5-1s) Among 
other things, he used it to establish ergodicity criteria for the continuous- 
time analog of QCAs. Another special case of oscillation norms, used for 
the same purpose, is to be found in a recent preprint by Majewski and 
Zegarlinski.(~9 

An important consideration in the study of transition operators on 
composite quantum systems is that the norm of an operator acting on 
observables may increase if we consider the given system as a subsystem of 
a larger one. It is therefore essential to consider versions of the basic 
operator properties which are "stabilized with respect to system enlarge- 
ment." The stabilized versions of positivity and boundedness (called 
"complete" positivity and boundedness) are well known, and we give a 
brief summary of these with references in an appendix. For the notion of 
"boundedness in oscillation norm" the stabilized version is described in 
Section 4. Much to our surprise, it turned out that in this case the necessity 
of stabilization is not characteristic of the quantum case. Even in the 
classical case, as soon as one has more than two states at each site, the 
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oscillation norm bound of a transition operator may increase with the size 
of the environment, as we will show by an explicit example. 

The paper is organized as follows. In Section 2 we establish our nota- 
tions for quantum lattice systems and develop the definition of QCAs from 
the classical notion of PCAs. Section 3.1 introduces oscillation norms in 
general C*-algebras, and shows how contractivity of a transition operator 
in such a norm entails ergodicity. Section 3.2 is devoted to the construction 
of a canonical oscillation norm for a system composed of many parts with 
given oscillation norms, such as the quasi-local algebra. The key result, 
reducing estimates on the infinite systems to an estimate of a local quantity, 
is shown in Section 4.1: if the local transition operators contract with a 
certain rate, as measured by the "completely bounded oscillation norm," 
then the same holds for an infinite tensor product of such operators. We 
briefly indicate in Section 4.2 how other plausible approaches to such 
estimates fail on this account. The basic ergodicity criterion for QCAs in 
Section 5.1 is a direct corollary of this estimate. In Section 5.2 we show in 
what sense the classical PCAs are covered by this criterion. Finally, we 
show in Section 5.3 that the same estimate on local transition operators 
which implies ergodicity by our general criterion also entails exponential 
decay of correlation functions in the unique invariant state. A quick review 
of the notions of complete positivity and complete boundedness, with 
pointers to the literature, is given in the appendix. 

2. D E F I N I T I O N  OF Q U A N T U M  CELLULAR A U T O M A T A  

In order to describe the notion of quantum cellular automata (QCA), 
it is best to begin by restating the classical structure in an algebraic 
language more suitable for generalization to the quantum case. The under- 
lying lattice, or set of cells, will be denoted by s To each cell x e &o we 
associate an observable algebra d " ,  which in the case of a classical system 
is simply the algebra d x =  off(/2.,-) of continuous complex-valued functions 
on the set /2" of configurations of each cell. Finite subsystems, associated 
with finite subsets A c ~a, are described by the tensor product 

dA= (~) d.,-=c~(X /2x) (2.1) 
x ~ h  \ x e A  / 

This formula is also used for infinite subsystems, and, in particular, for the 
observable algebra d ~~ of the whole system. The product on the right- 
hand side is then the infinite Cartesian product of compact topological 
spaces. Even if each cell has only finitely many configurations, and hence 
"continuity" for functions on each/2"  is a vacuous condition, continuity of 
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the observables f e ~  -~ is the nontrivial requirement that f may be 
uniformly approximated by observables depending only on finitely many 
cells. 

The PCA dynamics is determined by the transition functions 

px(OO, a ) =  ~:{ oo.,.., + l �9 al co, =co} 

for x e ~ ,  co �9 and measurable g =/2". This is a probability measure on 
/2" in its second argument, depending, in principle, on the entire previous 
configuration oo �9 In algebraic language this becomes an operator 

P.,.: ag" --+ ag -r 
(2.2) 

I *  

(P,_f)(o~) = J p:,.(a~, &o,.) f(co,.) 

The assumption that P..,f is a continuous function is called the Feller 
property of the PCA. (18' 4)it means intuitively that the updating of one cell 
does not depend too sensitively on infinitely many other cells. It is automati- 
cally satisfied for finite-range interactions, i.e., when P , . ( d " )  c MA(.,-~ c d -v', 
for some finite set A(x). 

Independent updating of different cells, the basic property of PCAs, 
means in more formal language that the distribution of o0,+], given co,, is 
the product measure formed out of the measures p.,.(o0,, �9 ). Equivalently, 
the transition operator P: d ~e --* d z is defined as 

,(| n . . (F ,  ( 31 
\ . x ' E A  / x E A  

where f - " � 9  ~ ' ' ,  A c Z~ ~ is an arbitrary finite set, and the product on the 
right-hand side is the pointwise product of functions in the algebra 
~r =cg(/2). Since the tensor products on the left hand side of (2.3) span 
the C*-algebra cg(/2), this equation determines P uniquely. This concludes 
our brief description of PCA dynamics. 

Some of the above is easily translated into the quantum setting: the 
main change is that now all observable algebras may be noncommutative 
(rather than commutative) C*-algebras with identity. For the observable 
algebra of a single cell one typically chooses the algebra J/ , ,  of n x n 
matrices with n < oo. The simplest example is a Heisenberg spin-l/2 system, 
for which ~r = s#,_ for every x �9 s The observable algebra of a composite 
quantum system is defined as the closure of the algebraic tensor product in 
a suitable C*-norm. In contrast to the classical case there may be several 
such norms, in which case we always take the "minimal" C*-norm. (2~ For 
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the product of finite-dimensional matrix algebras, in which we will mostly 
be interested, all C*-tensor norms coincide anyhow. We continue to use 
the notation ~r for the observable algebras (2.1) of finite regions. For 
A~ c A2, there is a natural inclusion d A ~ c  d A-', by tensoring each element 
of d "~ with the identity in d A'-/A~. The infinite tensor product defining the 
observable algebra of an infinite (sub-)system is always defined as the 
C*-inductive limit t21) of the finite tensor products with respect to these 
inclusions. As in the classical case, this simply means that all observables 
can be approximated in norm by finitely localized ones. A transition 
operator such as Px can be characterized as a positive operator (i.e., an 
operator taking positive elements into positive elements) mapping the iden- 
tity into the identity. Moreover, we will also assume that these properties 
persist if we consider d "  and ~r as subsystems of a larger system, i.e., we 
require P,. to be completely positive (see the appendix for definitions). 
A probability measure is replaced in the algebraic framework by the expec- 
tation value functional or state it induces. Thus states are linear functionals 
on the observable algebra which take positive values on positive elements 
and the value 1 on the identity. 

The key problem for the quantum generalization of PCAs is the 
positivity of the right-hand side of Eq. (2.3): in the noncommutative con- 
text a product of positive elements is practically never positive. In fact, 
restricting to the case of just two factors (A = {x ,y}  with f",fY~>0), we 
find that a necessary and sufficient condition for the positivity of P is that 
the ranges of the operators P.,. commute in d z [ see Proposition IV.4.23(ii) 
in ref. 20]. 

We therefore have to choose our definition in such a way that the 
commuting range condition holds automatically. The following is one way 
of doing this. It is perhaps not the most general possibility, but it covers 
the cellular automata which came up naturally in our construction of states 
on two-dimensional spin systems. The idea is to subdivide each cell into 
subcells, such that the images of different Px are contained in different 
tensor factors with respect to the refined tensor decomposition of d ~. For 
notational convenience we state the definition only in the case that the 
observable algebras and transition operators of different cells are all 
isomorphic. 

Def in i t i on  1. A quantum cellular automaton (QCA) is given by the 
following objects: 

1. A countable lattice s 

2. A set S of "subcell types" and a C*-algebra : ~  with unit, for each 
type s e S. 
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3. For each s e S, an injective "propagation map" d(s;. ): ~ '  ~ &o. 

4. A completely positive unit-preserving operator P~:Q~.~s  ~'~---, 
|  s. 

The following objects are defined in terms of the above: 

5. At each site x e ~  the algebra d * =  @ s E s ~ " ' ' ,  where .~"'~' is an 
isomorphic copy of ~'~. 

6. The quasi-local algebra d ~ -- @_,.~ z ~t-". 

7. The transition operators 

P.,.: d " =  @ ..~'"~ @ .~a~";"l"~d"~ 
s E S  s ~ S  

where Px is defined from P~ by identifying the tensor factor r162 in 
the range of P1 with ~m.;x~, .~. ~ dm.:x). 

8. The total transition operator P: d s~ ---, d ~" defined by Eq. (2.3). 

To see that the operator in step 8 is well defined, observe that the sub- 
cells are labeled by L, e x S .  and that the sets R " = { ( d ( s ; x ) , s ) l s e S }  

x S which describe the range of P,. are disjoint. Then, by Proposition 
IV.4.23(i) in ref. 20, P is completely positive. Since P1 = 1, this implies that 
P is norm continuous, and consequently has a unique extension by con- 
tinuity to the whole quasi-local algebra d z.  

Of course, when we think of a lattice, the injective maps d(s;. ) will 
typically be lattice translations. If we choose all d(s;. ) to be the identity, 
we obtain a system of noninteracting cells ~ " .  Note that the subcell 
decomposition is only relevant in the range of P,., not in the domain. Thus 
in each step the subcell decomposition of the previous step is obliterated. 
In particular, the second iterate P-" of a QCA cannot be written in the same 
form: the algebras Pz(dx) do not commute with each other. This does not 
contradict the necessity of the commuting range condition explained above, 
because the product form of p2 is also lost. Note that this is not an artefact 
of our quantum generalization: even in the classical case the second-genera- 
tion updates of a PCA are no longer independent, hence they no longer- 
satisfy the definition of a PCA. 

The adjoint operator of P takes states into states, and we will usually 
denote its action by o)~--,coop. It is easy to see (e.g., using the 
Markov-Kakutani  theorem, Theorem V.10.6 in ref. 22) that any QCA has 
an hwariant state, i.e., a state p such that p o P = p. A QCA is called ergodic 
if there is only one invariant state for P. The main problem addressed in 
this paper is to find sufficient criteria for ergodicity in terms of the given 
local data Pt and d(s;. ). We are also interested in stronger versions of 
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ergodicity, e.g., the property that pn contracts in norm to the invariant 
state, i.e., 

lim ][P"(A)-p(A)~11 =0  
n ~  o o  

for all A e d ~. A further closely related problem is to estimate the decay 
of correlations in the invariant state. 

To see what is involved, it is good to look at the most trivial example: 
a noninteracting particle system. Then we have only one type of subcell 
and d( 1;. ) = id ~. Here P is simply the infinite tensor product of copies P.,. 
of a fixed operator P~ acting on isomorphic finite-dimensional algebras d x. 
It is obvious that the restriction of an invariant state for Pl to a single site 
is invariant for P~, and, conversely, any product state formed out of 
invariant one-site states will be invariant for P (the latter construction need 
not be exhaustive). Hence P is ergodic if and only if P~ is ergodic. It is 
plausible that contractivity properties should also carry over. Assume, for 
example, that 

l IP 'S(A)-  p1(A) 1 II ~e"  IIA - p , (A)  ~ II 

for all A e d x, and Pl the unique invariant state of P~. Does this imply a 
similar bound for P? A direct estimate gives indeed a similar bound, but 
with e" multiplied by the number of sites (see Section 4.2). Hence this 
approach is not feasible on an infinite lattice. What one needs is a norm 
such that a contractivity estimate for a tensor product of completely 
positive operators P,. is not worse than the maximum of the estimates for 
the factors. This is precisely the role of the oscillation norms used in the 
classical results of ref. 2. Their quantum analog will be studied in the 
following two sections. We will then return to QCAs in Section 5. 

3. OSCILLATION N O R M S  ON C * - A L G E B R A S  

3.1. Def in i t ion and Basic Propert ies 

In this section we want to generalize the notion of oscillation norm to 
the noncommutative setting. The basic idea remains the same: we consider 
some operations 0~ which annihilate constants, i.e., ~(~ ) =  0. In the classi- 
cal case these operations measure the effect of the spin flips at different 
sites, i.e., 

(O~,f)(a,,tr,o,,)=�89 (3.1) 
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where anot.  stands for all spin variables at sites other than a. Then we can 
say that  an observable f is nearly constant  if the "oscillation no rm"  
~ l l ~ ( f ) l l  is small for all ~. 

For  classical systems with more  than two states per cell, as well as for 
any quan tum system, there are m a n y  ways of "flipping" a single cell. There 
are several proposals  in the literature for how to take this into account. 
However,  all proposals  agree that  the "total  oscillation no rm"  of a lattice 
system should be the sum of the oscillations of  each cell. Moreover ,  we will 
see below that  the total  oscillation norms in these different approaches  are 
equivalent whenever the local cells are described by finite-dimensional 
algebras. Perhaps  the simplest proposal  ~9) is to define the oscillation of an 
observable A localized in a single cell as 

[[IAlllo-- IIa - r/(h) ~ II (3.2) 

where r/is the normalized trace (or any other state) on the cell algebra d " .  
Other  approaches  use a family {5~} of operators  for each cell, and one can 
consider the "sup-oscillation norm"  

IIIalll = sup II~(a)l l  (3.3) 

It is also suggestive to define 

It/(A) - t/'(A)l 
IllAllla-- sup (3.4) 

,,,, d(r/, t/') 

where the supremum is over all pairs of  states, and d is some metric on the 
state space. In the classical case one could restrict the supremum to pure 
states, so that  T[[A[[la is just the Lipshitz constant  of  A with respect to the 
metric d. t23~ Finally, one may  use for the single cell precisely the same form 
as for the total oscillation, namely a sum 

IIIAIII :=~ i l~(A)ii  (3.5) 

over "elementary" oscillations 5~(A). This is the approach  used by 
Matsui. ~5) We will also adopt  it, mainly because it agrees best with the 
subcell structure of  cellular au tomata :  the p ropaga t ion  maps  will introduce 
a reshuffling of subcells between different main  cells, and this process 
preserves oscillation norms only if the oscillation within each cell is defined 
by the same mechanism as the total oscillation. This approach  also sim- 
plifies the presentation in the sense that  we can use the same results about  
oscillation norms for the single cells as well as for the whole system. 
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Definition 2. Let ~r be a C*-algebra,  1 �9 ~r Let I be an index set 
and {6~ let �9 I} a collection of bounded linear operators  ~ = ~r --+ ~r such 
that 

1. 0,(1)  = 0, V~ � 9  

2. sen~ = { a  � 9  IIO~(A)I[ < ~ }  is I1" II-dense in s l .  

3. There exists a state r / �9  d *  (reference state) such that  for A �9 ~ 'n ,  

I I a - - q ( A )  111 ~ ~ 116~(A)II (3.6) 

IIIAIH := Y', II6,(A)II 

is called the osci l lat ion n o r m  of A �9 d .  

Obviously,  Ill" Ill is seminorm on ~ .  It satisfies 

inf II A - 21 II ~< [I A - q( A ) 1 II ~< Ill A Ill (3.7) 
2 G C  

In particular,  IIIAIII = 0  implies that  A is a multiple of  the identity. 
A simple argument  shows that  an infimum such as the one on the left- 

hand side of  (3.7) is attained at some 2 = 2(A) in any normed space d with 
a fixed element 1 �9162 In a Hilbert  space we can even assert that  2(A) is 
uniquely determined and depends linearly on A. In a C*-algebra,  however, 
the shape of the unit ball is different and although, for Hermit ian A, 2(A) 
is uniquely determined, it is a nonlinear functional. If  the overall bound in 
(3.7) holds, however,  we can easily make  every  state an admissible 
reference state, albeit for the oscillation norm IIIAIII'=2111AIII: if 2 is such 
that  [ [ a - 2 4  [I ~< IIIAIII, then, for any state r/, 

IIa -~(A)111 = I I ( a - 2 1 ) + ~ / ( A  - ) , 1 )  111 ~<2 IIa -2~1[ ~<2 Illalll 

This shows that  the choice of  the reference state is largely arbitrary. 
However,  the existence of some such state is a nontrivial constraint  on 
{6~}, as the following example shows. 

E x a m p l e  :3. Let d =  ( ~ ) i ~ d ;  be the quasi-local algebra on the 
one-dimensional chain, with d ~--- d I for all i. Denote  by r: d ~ d the 
translation au tomorphism,  defined by 

r ( Q  A ~ ) =  (~ A ;+ '  

Then, for A �9 d ,  
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We define an operator  6: o~' -~ ~ by 

6(A) := ~(A)--  A 

Then 6(A)---0 is equivalent to the translation invariance of A, which in the 
quasi-local algebra d is equivalent to A ~ C~. Thus the one-element collec- 
tion {fi} satisfies the first two conditions of Definition 2 (with t i n ,  = d ) ,  
and, moreover,  (~(A)=0 implies A ~ C~. But condition 3 is violated in the 
strong form that there is no finite constant C such that (3.7) holds as 
IIA -~,~ [I ~ C IIIA[II . 

To see this, pick some element A~ ~ ~'~\C4 in the one-site algebra and 
a function J2 Z ~ R with f(i)~> 0, and Zi f ( i )=  1. Then set 

A = ~ f ( i )  Ti(AI) 
i 

Let o~ be a state on ~/J, and let co~= (~)~z col be the infinite product  
state on ~4. Then 

][A - 24 ]1 ~> o)~(A -- ).4 ) = co,(A, ) - 2 

[lfi(A)[I = ,~. [ f ( i ) - f ( i -  1)] v~(A,) 

~< [IA, l[ Z [ f ( i )  - - f ( i -  1)l 
i 

With a suitable choice of c,~ and 2 we find IIA - ) A  II 1> inf ~., I IA l -2 '4  [J, and 
hence, with IIIAl[I = [16(A)ll, 

IIIAlll IIA,[I ~ [ f ( i ) - f ( i -  1)f 
C - '~<  IIA - ) A  ] - - - - ~  ~< inf,, H A l -  2'4 II 

By choosing f to be slowly varying, e.g., f ( i )  = ( 1 - p)/( 1 + p)p I~i for p ~ L 
the right hand side can be made arbitrarily small. A 

Oscillation norms defined with a single 6~ are precisely those of the 
form (3.2), i.e., 6 ( A ) = A - ~ I ( A ) ~ .  The lower bound (3.6) is then equivalent 
to Ilia 1[[0 ~< [[I A]II. In the other direction we have the estimate (see Appendix 
IV of ref. 19) 

,,,A,,, = y '  116=(A-,I(A) '  )ll~< (Y'. ll6~[,/lllAlllo (3.8) 
/ 

Hence. if there are finitely many oscillation operators 6~. or the above sum 
is otherwise convergent, the norms [][. [][ and [[[. H[o are equivalent. This is 
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not a big surprise, since on a finite-dimensional d ,  all seminorms which 
vanish exactly on the constants are equivalent. 

In the next example we will consider a special case of  Definition 2, 
which will sometimes be especially convenient. The oscillation norms used 
in refs. 15-17 and 19 are of  this form. 

Example 4. We say that  the operators  6~ satisfy Matsui's condition 
when 

6~(A) = A  - -q(A)  ~ (3.9) 
at@l  

for some state g. Then, by a simple application of the triangle inequality, 
condition 3 of  Definition 2 is satisfied. Another  situation in which this con- 
dition comes up naturally is the following: Let ~ '  = J//,, be the algebra of  
n x n matrices, and let G be a finite group. Consider an irreducible projec- 
tive representation g ~ Ug ~ Jg,, of G, and set 

6g(A) = ~G[ (A - UgA U*) (3.10) 

Then [Gl-Iff'gUgAU*g commutes  with all Ug, and is hence of the form 
r/(A)~. Clearly, q is an invariant state with respect to all Ug, and must 
therefore be the normalized trace of  .A',,. Since for the identity element 
e e G we have 6,. = 0, it suffices to take the above 6g for g ~ I=  G\{e}.  With 
this choice, Matsui 's  condition (3.9) holds. Note  that  since [IAI] = HAUgI] 
the oscillation norm may  be written in the suggestive form 

= 1  2 IIIAIII IGIg~GtlI-A, sg]ll  

The simplest special case is to take the Ug as the three Pauli matrices 
a~ E J///2 and U,. = 4: the product  of  any two of these operators  is in the 
same set, up to a phase. The group G([G[ = 4 )  consists of  the rotations by 

a round the three Cartesian axes in R 3. In this case one also finds easily 
that  the reference state r/is uniquely determined: let q' be another  reference 
state. Then 

3 

IIO'l- q'(o't)'~11 ~< IIIo ' t l l l - '  - a  ~ I[[Ol, o,211 = �88 + 112~;[I) = 1 
i = 1  

implies that  q ' (a~)=O.  Repeating the same argument  for the other com- 
ponents,  we find that  J7'= r /has  to be the normalized trace. /X 
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The infimum on the left-hand side of  (3.7) is the s tandard quotient 
norm of ~Qr Hence II1' Ill can be considered as a proper  norm on the 
subspace J ~ / C ~  of this quotient. We now show that  this norm turns 
d n , / C ~  into a Banach space. 

L e m m a  5. dn~/C~ is Ill" Ill-complete. 

Proo f .  Let {A,,} c d n , / C ~  be a Ill III Cauchy sequence. It follows 
that IIA,, II ~< IliA,, Ill. Because d / C ~  is complete for the quotient norm II �9 II, 
there exists an A e d / C ~  such that  IIA - A,, II --" 0 for n --* oo. We have to 
show that  A e zCn~/C~. Let I '  c I be a finite subset of  the index set. Then, 
because each ~ is bounded,  

~, 116=(A)II = lim ~ 116=(A,,)II 
~ E I '  n ~  05  : t E l '  

~<lim sup )-" [I~(A,,)I[ 
t t ~  oc, ~ t E l  

~< lim IIIA,,[[[ 

This limit exists because A,, is Ill" IlI-Cauchy �9 Taking the supremum over all 
finite 1' c 1 ,  we find that IllAIII < or. Similarly, we find that  

[[fi~(A-A,,)lf ~< lim IllA,,--A,,III 

and since this hound is independent of  I ' c L  we have that  
lim,, IlIA - A,, [[] = 0. | 

Since we have not postulated any further propert ies of  the opera tors  
~ ,  the space -#x~, does not come with a natural  algebraic structure. 
However,  in the special case where ~ ( A ) - - i [ A ,  D~] are derivations, but 
also in the case (3.10), we get 

IIO~(AB)I[ ~< I[0=(A)[I- []BII + IfAl[. [I6=(B)[I 

and hence 

IIIABlll ~ IIIAIII- IIBII + IIAII- Illnlll (3.11) 

In particular, t i n , ,  becomes a Banach algebra with the norm IIAl[;= 
IIAII + 2  IIIAIII for any 2 > 0 .  

The main reason for introducing oscillation norms is that in the case 
of  large systems it is often easier to establish contractivity in this norm than 
in the C*-norm II" II. Nevertheless, as the following proposi t ion shows, this 
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contractivity is sufficient to establish convergence of the iterates in the 
C*-norm, and hence ergodicity. Note  that while the oscillation norms 
(3.2)-(3.5) are "equivalent" in finite-dimensional situations, the best con- 
stant e in the assumption of the proposit ion will depend on the choice of 
n o r r n .  

Propos i t ion  6. Let d be a C*-algebra with oscillation norm II1 III, 
and consider a linear operator  P : ~ ' - - . s r  such that IIP(A)II<...IIAII, 
P(] ) = 4, and, for some fixed e < 1, and all A e o~r 

IIIP(A)IH ~<~ IIIAIIL 

Then there exists a unique state p �9 ~r such that p o p =p .  Moreover: 

1. lim . . . .  IIP"(A)-p(A)~II = 0  for all A � 9 1 6 2  

2. i lP"(A)-p(A)~II  <<.2e" [IIAIII for all Azo~cn.. 

Proof. Fix an element A � 9  and consider the sequence 
A,, = P"(A). Choose some numbers 2,, for example 2, = q(A,,), such that 

IIa,,- 2,,~ II ~< IIIa,,lll 

Then {2,} is a Cauchy sequence: taking n/> m without loss of generality, 
we get 

12,,- 2.,I ~< IIL,~ -A,,II + IIA,,- ),,,, ~ II 

~< IIIA,,II[ + lip . . . . .  I1" IIA,,-L,,~ II 

~< (e" +~"')  IIIAIII 

Let p ( A ) = l i m  . . . .  2,,. Inserting this definition into the previous 
inequality, we find 

I L , - ~ ( A ) I  ~<E" IIIAIII 

and for A e t i n . ,  it follows that 

IIP"(A) - p ( A )  * II ~< IIP"(A) - 'L,~ II + I L , -  P(a) l  

~< IIIa,,lll +~"  IIIAIII 

~<2e" Ill/till 

p(A) is linear, because A ~--,p(A)~ is the limit of the linear operators P". In 
addition, p(A) is also a I1" II-continuous functional on ~r 

IP(A)[ ~< liP(A) ~ -P" (A) I I  + [IP"(A)II 

~<2e" IIIAIII + IIAII . . . .  , IIAII 
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Let p denote the cont inuous extension of/~ on d .  Then Ip(A)I ~< [IAII, i.e., 
IlPll = 1, and also p(~)~ =l im, ,  P " ( ~ ) = 4 .  hence p is a state. 

For  showing the convergence proper ty  1, let A �9 ~r and 6 > 0. Then 
we may  pick Aa � 9  with IIA-A~II-..<6. It follows that  

I IP"(A)- -p(A)  "0 II ~ IIP"(A - Aa)II + IIP"(Aa)-p(Aa) "0 II + I p ( a 6 - -  A)I 

~< IIA -Aa l l  +2e"  IIIa~lll + I l a a -  All 

~< 26 + 2e" IIIA~III 

Hence, for sufficiently large n, the left-hand side becomes arbitrari ly small. 
Finally, suppose v �9 d *  is another  fixed point of  the adjoint of  P, i.e., 

v o P = v. Then 

v(A) = lim (voP")(A)=v(p(A)  ~) = p ( A ) .  v(~) 
t 1 ~  o o  

Hence, if v is also normalized, we have v = p. II 

We want  to use this criterion to establish ergodicity of cellular 
au tomata  describing spin systems. The opera tor  P will then be built up 
from local operators  P,.. We thus have to construct  an oscillation norm for 
composi te  systems, i.e., for tensor products  of  algebras with oscillation 
norm, and then have to apply Proposi t ion 6 to the product  system. 

3.2. Tensorable Oscillation Norms 

We now take the algebra d = d ~' to be the quasi-local algebra over 
a lattice 3 a, to each site of  which is at tached a unital C*-algebra  s /x,  i.e., 

d - d u ' =  | d - "  

Assume now that  we are given an oscillation norm for the algebras d "  at 
each site. We would like to assemble from this an oscillation norm for d "~. 

The basic idea is very simple: as the collection of "flip" operators  we 
simply take the union of the flip operators  for each site, i.e., 

U { ")6= I=eI"-} (3.12) 
X E c j  ) 

_ _  X X where 0~ "~ - 6= | id ~\1"1 is just the action of 6= at site x of  the quasilocal 
algebra. The oscillation norm of an element A �9 d is then 

IltAIII = ~ ~ 116k"~(A)[I (3.13) 
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This quantity is always defined, but possibly infinite. So we can define, as 
before, 

d~. = {a  ~ d l  IIIAIII < ~ }  

Clearly, the finite tensor products Qx~AAx, with A . ~ ' ~ . ,  and their 
linear combinations are in t in . .  By Definition 2, ~'~.  c d "  is norm dense, 
and by definition of the quasi-local algebra the finite tensor products span 
a dense subspace of d .  Hence ~ n ,  c~ d~o~, and afor t ior i  -~r is dense 
in d .  In order for II1 I[I to become an oscillation norm, we need to estab- 
lish the estimate (3.6) in the definition of oscillation norms, with the 
obvious candidate 

q =  (~) r/x (3.14) 
xE.LP  

for a reference state. For this, we need the following "stabilized version" of 
(3.6). It is automatically satisfied in the commutative case (cf. Proposition 
10 below). For the notion of complete boundedness, see the appendix. 
When q is a state on the C*-algebra d ,  we denote by 0: d ~  d the 
operator O( A ) = tl( A ) ~. 

D e f i n i t i o n  7. An oscillation norm defined by operators {di~ [~s I}  
on a C*-algebra d ,  with reference state q, is called tensorable, if each ~, 
is completely bounded, and 

IlA-(id~/,, |  <~ ~ II(id.,,,,| (3.15) 

for A e.,g,,(C) | o~r 

At first sight it may seem rather special to allow tensoring only 
with s///,,. However, as in the definition of complete positivity, this is suf- 
ficient to give the analogous statement for all C*-algebras. 

Lemma 8. Let {6~lct~I} define a tensorable oscillation norm on a 
C*-algebra ~',  and let .//r be any unital C*-algebra. Let . I / @ d  be the 
minimal C*-tensor product and A ~ J# @ ~r Then 

ILA-(id.a|  ~< Y'. [[(ida| (3.15') 
0 t e l  

Proos We need the following basic observation: if Pr is a net of 
Hilbert space operators with nnpy [I ~< 1, converging strongly to the identity 
operator then, for any bounded operator A, 

lim IlP~*Apyl[ = IIA II (3.16) 
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Indeed, the inequality 

lim sup Ilp~Aprll ~<lim sup Ilp~ll ~ IIAI[ ~ I[all 
Y Y 

is trivial. On the other hand, let ~, ff be unit vectors such that [(~b, Ar 
IIA [I-e, and let y be sufficiently large such that []py~- ~ll, t lPr~-  ~ll ~< e. 
Then 

and (3.16) follows by taking the inferior limit and e--* 0. 
Without loss we may take Jr and d to be faithfully represented on 

some Hilbert spaces. Then the minimal C*-tensor product y / 4 |  is 
defined as the C*-algebra generated by operators of the form M |  A, with 
M ~ .M and A ~ d ,  respectively. Let p~, denote a net of finite-dimensional 
projections in the representation space of Jg, converging to the identity, 
and introduce the operators py(M)=pyMpy. Then, for A ~ g |  we 
have A = ~y | ida, )(A) e J4, | ~r where n is the dimension ofpy. Hence, 
because ~y |  and (id~t |  commute, 

II(P~ | id , ) (A - ( ida  | 0)(A))II = Iij - ( ida  n | 0)(2)11 

R ~ I  

Hence the result follows by applying (3.16) to the left-hand side of this 
inequality and the family of projections p~, | ~. | 

The basic result concerning the tensor product of algebras with oscilla- 
tion norm is the following. The second part was proven in a special case 
by MatsuiJ ~s) 

P r o p o s R i o n  9. Let { ~ X l x e ~  } be algebras with tensorable 
oscillation norms, defined by { ~ 1 ~ I " } ,  and with reference states 
~/" ~ (dx)  *. Then: 

1. ~ - - Q x ~  ~ "  is an algebra with tensorable oscillation norm 
given by (3.12), with reference state (3.14). 

2. ~r r~ dlor is dense in t in , ,  with respect to Ill' III. 
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Proof. We show par t  2 first. For  any finite subset A ~ Z, a, define 

0 "':= 1-I O,x, 
x C A  

where O(~)(A) = (0~| Therefore the range of 0 A' is contained in 
the local algebra (~)x~a~r For  A e a,r we trivially have 

IIOA'(A)-All a ~ . ~  0 ( , )  

because A absorbs  the localization region of A. Consequently,  because 
~r ~ a '  is II �9 II-dense, ( * ) is valid for all A s sO. 

We show next that  

IIIOA.(A)_AIII A-_% o 

for A e ~r One has  

IIIOA~(A)-All I 

= y. ~ II,~(~)(0A~-id-~)(A)ll 

= ~, ~ IlO2"~ + ~" ~ 116~)(0X-id'~e)(A)[I 
x E A  e t E l  x x C A  aElm 

= Z Y', [1(0 ' ' - i d - ~ )  67)(A)11 + Z Z 11'~7'(A)II 
x E A  ~ 1  x x ~ A  c t ~ l  x 

because for x e A the operators  0 A" and ~ )  commute ,  and for xr  5d ~1 
acts on the factor ~ ix), so g~x) o 0Ac = 0. In the limit A ~ A a the second term 
vanishes because the sum over all x e s converges for A e d a , .  The first 
sum is termwise dominated  by the sum defining 2 IllAIII. However,  because 
6 ~ ) ( A ) e d ,  each term in this sum goes to zero by ( * ) .  Hence the sum 
goes to zero by dominated convergence. Hence Ill0aC(a)-AIII--,0, and 
d ~ .  u d~oc is II1' Ill -dense in sen.. 

To prove par t  1 we have to verify Definition 2. The boundedness of  
the g~) follows f rom the complete boundedness of the operators  5(x) on 
d x. The proper ty  5~)(~ ) = 0 is evident, and we argued for the II1' Ill-density 
of t i n , ,  above,  before (3.14). Hence only the estimate (3.6) remains to be 
seen. We begin by showing it for A e ~r c~ JZ/toc, say A localized in a finite 
region A ~ .W. We conveniently label the sites in A as 1 ..... IAI. Then with 
a telescoping sum we find 

822/82/3-4-24 
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A -  (~) 0"(A) ~ < ~  ~ )  0 " | 1 7 4  (~) idY(A) 
x ~ A  k =  1 .x<k y > k  

Ihl .,cl~< k 0Ix) = ~ �9 I I a - - 0 ~ k ) ( a ) l l  
k = l  

~< ~ ~ IlO~)(a)ll=lllalll 
k E A  a e I  k 

where 0(x~: d ~ d is the operator 0X|  At the last estimate we 
used that the product of the 0 (') is a completely positive unit-preserving 
operator, which hence has norm l, and, of course, the tensorability of Ill �9 HI- 
Hence the required estimate holds for A e~cn,  c~ M~or In particular, it 
holds for the approximants f/A'(A) of a general A ~ ~r Since by part 2 of 
the proposition these elements approximate A in both norms, both sides of 
the estimate converge as A ~ Lf. This completes the proof that [H" IT[ is an 
oscillation norm. It is tensorable, because we can include an additional 
tensor factor J/C,, in the product defining d ,  and use the same estimates as 
above to establish (3.15). I 

With this proposition the construction of oscillation norms for infinite 
systems is reduced to the construction of tensorable oscillation norms for 
the one-site algebras. Recall from (3.8) that all oscillation norms for which 
Y ~ z  [16~1[ < oo are equivalent. By summing this estimate over all cells, we 
conclude similarly that all oscillation norms on a composite system for 
which 

IlO~[l=b ~ c < ~ (3.17) 
o~E I x 

with a constant independent of x are also equivalent. In particular, this 
holds for the norm in ref. 19. Equivalence can also be shown for global 
oscillation norms, which are defined as the sum of local oscillations, which 
are in turn given by some supremum (23) [see (3.3) or (3.40.)]. 

Showing tensorability is especially easy in the classical case: 

Proposition 10. On an Abelian C*-algebra ~r every oscillation 
norm is tensorable. 

Proof. We can set ~r = ~(X)  for some compact space X. Let ~ be 
any C*-algebra. Then J4 | d - cd(X, ~ ' ) ,  the algebra of JC-valued con- 
tinuous functions on X, with the norm 

I[All :=sup IIA(x)l[ =sup [,~(A(x))l (3.18) 
X X, ~J 
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where the supremum over ~ is with respect to all linear functionals on Jr  
with IIr ~ 1. Then ((id ~ | 8~(x, dy)A(y), where we have 
used ~ to denote both the operator and its integral kernel. Applying the 
estimate (3.6) to the continuous function x ~  ~(A(x)), we obtain 

II A - (id.a | O)(A )ll = sup ~(A(x))  - [ q(dy) ~(A(y))l 
:r cab 

# l 

<.sup~sup]f6~(x, dy)~(A(y)) 

s supsup If s=/x, 
~ I  q> x 

= ~ II(id..,~| | 

In the noncommutative case, tensorability is a nontrivial constraint on 
oscillation norms. The following is a handy criterion. 

I . e m m a  11. Suppose that the operators {6~[~I} defining an 
oscillation norm.Ill. Ill on a C*-algebra d satisfy Matsui's condition (see 
Example 4 above). Then it is tensorable. 

Proof, Let A ~ J / , ( C ) |  Then, by (3.9), 

(id.,,.Q~)(A)=(id ,,.| ~ 6~I(A ) 

= (id.,a | (ida, - 0))(A) 

= A - ( i d u . |  

By taking norms on both sides we find (3.15). | 

Finally, we record for later use that for tensor product operators a ver- 
sion of (3.11) holds without further assumptions: using that in a minimal 
C*-algebra tensor product IIA | = IIAII. liB[I, we find 

Ilia | BIll = IlIA Ill. IlSll + I IAI I  IIIBIII ( 3 . 1 9 )  

4. C O N T R A C T I V I T Y  OF T E N S O R  P R O D U C T  O P E R A T O R S  

4.1. Osci l lat ion Norm Est imate 

In the simplest, noninteracting case of a cellular automaton the total 
transition operator P is the infinite tensor product of the one-site transition 
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operators P.~. If we know that each P.,. contracts exponentially with rate 
e < 1 to a multiple of the identity, can we also assert this about P? This 
turns out to be the crucial question for developing ergodicity estimates for 
quantum cellular automata. We will show in this subsection that, provided 
we use oscillation norms to express contractivity, the product P indeed 
contracts with the same rate. In fact the validity of this bound is the main 
reason for considering oscillation norms. In order to make this point more 
precise we show in the next subsection how other norms fail to give the 
desired estimate. 

The most straightforward definition of contractivity of a transition 
operator P is given by the estimate IIIP(A)Ill ~<E IIIAIII as in Proposition 6. 
The best constant e in this estimate is conveniently denoted by IIIelll, it is 
the norm of P as an operator on dan-  However, this quantity is not 
appropriate for the study of composite systems, since even in the classical 
case we may have lllid.,e | > IIIPIII (cf. the example at the end of this 
subsection). Therefore, we use a version of IIIPIII, which is "stabilized" with 
respect to coupling the system to an outside world. 

D e f i n i t i o n  12. Let ~r and ~ be algebras with tensorable oscilla- 
tion norms generated by {d~ l~e I  } and {~plf leJ} ,  respectively. Let 
P: ~r --* ,~ be linear and completely bounded. Then the completely bounded 
oscillation norm of P, denoted by IIIPIIl=b, is defined as the smallest constant 
e for which the inequality 

y' (id a.| (~pP))(A)ll ~c ~ (id,e.| 
f l~J  ~t~l 

(4.1) 

holds, for all n e IN, and A e s/e',, | d .  

In particular, for n =  1, we get IIIPAIII ~ IllPlllculllAlll, i;e;, 
IIIPIII ~ Illelllr Precisely as in Lemma 8 one sees that if the bound of the 
form (4.1) holds for all algebras ,~',, |  it also holds for all minimal 
C*-tensor products , r 1 7 4  with other C*-algebras. The crucial property 
of this norm is given in the following theorem. 

Theorem 13. Let P,.: d ~ ~ #x, x ~ .L~ o, be a family of completely 
positive unit-preserving operators between algebras with tensorable oscilla- 
tion norms. Let d =  @ . ~  d x and # =  @ . , . ~  # be equipped with the 
oscillation norm described by Proposition 9, and let P: d ~ # "  be defined 
by P = @ x ~ _~ P.,-. Then 

IIIPIIIcb = sup IIIP.,-IIIcb (4.2) 
x E . ~  a 
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Proof. The inequality I[IPIIIcb ~ sup .,.lllPx IIIcb is trivial, because the 
estimate (4.1) written for P and an observable A ~ ~ ./t | d "  ~ ~ ~ / |  sr 
reduces to the corresponding estimate for Px. 

For the opposite inequality we have to show that, provided each P.,. 
satisfies the estimate (4.1) with the same constant e, i.e., e~> IIIPxlll~b for all 
x ~ ~ ,  then so does P. Consider A E J# @ d ,  and one term in the sum on 
the left-hand side of (4.1), say for x ~ ,  and fl~jx. We have to estimate 

(id.,# | (fi~"P))(A) 

( )( . - x )  = id .a |  @ P y |  id~t |  @ M~.,.| (A) 
y ~ x  y # x  

The first parenthesis is a contraction because each Py is completely positive 
and unital. Hence taking norms, summing over fl ~ J-", and using Definition 
12, we find 

II (id.,, | (~( 'P)) (A)  II 
# e j ~  

~< IIIPxll[ 2 ( id . , , |  @ id~ , . |  
~ / x  ) , ~ x  

4E Y~ I1(id,,| 
~E/x 

The sum of these inequalities over all lattice points x ~ &a is the desired 
estimate, showing IIIPLIIcb ~<e. I 

Hence, for a noninteracting system, it suffices to show IIIe.,. IIl=b ~< e < 1 
to conclude ergodicity from Proposition 6. However, the explicit estimate 
of II[exlllcb may still be a difficult problem. One way to handle it is the 
following decomposition property. 

I . e mm a  14. In the setting of Definition 12, suppose that for each 
fl ~ J we have a decomposition 

a E l  

with Gp~: d ~ ~ linear and completely bounded, and the sum strongly 
convergent on ~'. Then 

IIIelllcb ~<sup Z Ilap~ilcb (4.3) 
~ e l  # e J  

where II1' IIl~b is the completely bounded norm. 
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Proof. The proof is obvious by inserting the decompositions of ~pP 
and using the triangle inequality. | 

If d and ~ are finite dimensional, such decomposing maps Gp~ always 
exist. In fact, the necessary and sufficient condition for an operator (here 
~pP) to allow a decomposition with given 3~ is that ker fipP D N~ ker 3~. 
However, the right-hand side of this inclusion is equal to C~ by part 1 of 
Definition 2, and, clearly, C~ c ker 3pP. We conclude that, on finite-dimen- 
sional algebras with oscillation norms defined by finitely many fi~, we have 
[[[P[[[cb < ~ for all transition operators. 

If [[[Plllcb=0, we must have ~/j(P(A))=0 for all fl, so that 
P(A) = P,o(A)= co(A)~ for some state co on d .  Near maps of this form we 
find transition operators with small oscillation norms: these could be called 
transition operators with large disorder, since in one step they wipe out 
nearly all memory of previous states. It is straightforward to see from the 
definition of the completely bounded oscillation norm that, for 0 ~< 2 ~< 1, 
the equation 

II1( 1 - ,~) P,o + , ~ e l l l  cb = )~ IIIelll ~b (4.4) 

holds. (In fact, the inequality ~< already follows from the convexity of 
III-lllCb). Hence, for sufficiently small 2, the ergodicity criterion, Proposition 
6, applies, and (1 -2 )P ,o  + 2P has a unique invariant state, which will be 
close but not equal to oJ. 

In some cases, one can use the freedom of adapting the operators ~ 
to the problem at hand to give a simple estimate of [[IPIllcb. An example is 
the following: 

L e m m a  15. Let P: ~ ' ~ d  be a transition operator on a finite- 
dimensional C*-algebra, and suppose that P is diagonalizable, i.e., it has a 
representation in the form 

N 

P = D o +  ~. 2~D~ 
a = l  

with D~Dp=fi~aD ~ for 0~<0r fl<~N, and Do(A)=co(A)~ for some state co 
on d .  Define an oscillation norm by setting fi~ = D~ for 0r = 1 ..... N. Then 

IIIelllr = max{ I,LI I ~ = 1 ..... N} 

Proof. Note that the oscillation norm so defined satisfies Matsui's 
condition (3.9), because SN=0 D~ = id, and is hence tensorable. The lower 
bound IIIPIllcb~>maxt).~l follows by inserting the eigenvectors into the 
estimate defining 111 Ill,b, and the upper bound follows from Lemma 14 
with Gp~ = 2~gi~pid. I 
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In the classical case we may simplify the definition of Ill" Illr by con- 
sidering couplings to classical systems only. For Ising systems, i.e., the case 
considered in ref. 2 and other principal papers on the subject, the stabiliza- 
tion can even be omitted entirely. 

Lernma 16. Let J ,  ~ be Abelian algebras with oscillation norm, 
and P: ~r ~ ~ a completely bounded linear map. Then: 

1. [llPllleb is the best constant e such that the estimate 

I[(id l~| <~e ~ II(id ~| 
f l e J  ~ I  

holds for all Abelian C*-algebras Jr 

2. If :~ is two dimensional, or the oscillation norm on :~ is defined 
by a single ~, i.e., J has only one element, then [I[PIIIeb = [llPll[, i.e., 
the best constant is already achieved by taking J /  one dimen- 
sional. 

Proof. As in the proof of Proposition 10, the quantum observable 
algebra is reduced to a classical one by evaluating in appropriate states. Let 
~r and let J# denote the C*-algebra of bounded 
functions on the index set J. Suppose the bound in part 1 holds with 
this Abelian algebra ./#, and let A e./#,, |  Thus, for each fie. / ,  
( id j / |  is a continuous J l , -va lued function on Y. By the defini- 
tion (3.18) of the norm in J r  |  there is a linear functional ep  on J/, ,  
of norm ~< l, such that 

I[(id.~t. | ~pP)(A )[1 ~a.| = [l~z| ~pP)(A)l[ ~ 

= II~aP(C~a| 

where we used that ep :Jg , , - -*C,  and C |  We now introduce 
the function A e J # |  defined as J(fl, x)=~p(A(x)), or A( f l , . )=  
(r  @id.~c)(A). Then the norm on the right-hand side in the above equa- 
tion is smaller than 

sup I[~zP(~a,| II(id./e | 3aP)(A)II.H| 
Z, 

Summing over fl and applying the given inequality for J//, we find 

L(id.,~. |174 <~ Vf'. [l(id.~,|174 
f l ~ l  o ~ l  
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and the result (1) follows, because 

II (idea | 6~,)(~)fl.~, ~ 

=sup  II(r174 6~)(A)II ~, p 

~< sup I1(~ | 6~)(A)II ~, = ll(id, a | 6~)(.4)11 ~, 

To prove part 2, note that, on a two-dimensional algebra 9~, all operators 
~p with ~p(~)= 0 are proportional, so we may replace the definition of the 
oscillation norm by an equivalent one with [J[ = 1. Hence the claim follows 
from the observation that we used part 1 only with the now one-dimen- 
sional algebra J / =  re(j). 1 

However, in classical systems with more than two spin values per site 
we may have strict inequality [[[P[[[cb > [[[P[[[. In the following Example 17 
we even have [[[P[[[cb> 1 > [[[P[[[. Hence P contracts exponentially to its 
fixed point, and the same is true for a noninteracting QCA with this one- 
site transition operator. However, for a system with nontrivial propagation 
maps this information is not sufficient, and only [I[P[[[~b gives a bound 
which is independent of the propagation. 

For computing [l[P[[[cb Lemma 14 may be helpful even in the classical 
case, since then the norms I] G#~ ]l Cb can be replaced by ordinary norms. 

We remark that with some of the modified definitions of the oscillation 
norms on the single-site observable algebras described at the beginning of 
Section 3.1, the stabilization can be avoided altogether in the classical 
caseJ 23) However, as already remarked in that context, this would be in 
conflict with our technique for proving the ergodicity criterion in the 
general quantum case. 

E x a m p l e  17. We take d as a system of two Ising spins, with its 
standard oscillation norm (3.1). This norm can be written as 

Ill fill := �89 max [jr( - 0  1 , 0"2) -- f (al ,  0"2)1 
o "  I , o" 2 

+ �89 max If(a I , - a  2) - f ( a l ,  a2)i 
0"1 �9 0"2 

o , - , . o ,  z 
0"1, 2 0"1,0"2 

+�89 E a,a2f(a, ,a2) 
a t  ,~2 
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where the variables a; are + 1. F r o m  the second form it is obvious that  the 
unit ball of III �9 III is the Cartesian product  of  I~ (corresponding to multiples 
of the identity), and an octahedron in R 3. We now consider a transition 
opera tor  P: ~r --* d given by the matrix 

0 2 10 
P =  7 5 

0 0 

(4.5) 

in a basis in which the components  o f f  are ( f (  + + ), f (  + -  ), f ( -  + ), 
f (  - - )). The oscillation norm IIIelll is readily computed,  by applying P to 
the six extreme points of the octahedral  unit sphere of  III - III and comput ing 
the oscillation norms of the images. The result is 

IIIPIII = 3/4 (4.6) 

We now couple the system to an additional Ising spin, denoted by ao, and 
described in the algebra ~ = C-'. What  we have to estimate is the opera tor  
norm of ( i d a  @ P): J g  @ d ~ J [  @ d with respect to the norm 

IIIflll..,,| := �89 max I f (ao ,  - a l ,  a ,_ ) - f (ao ,  a l ,  a2)[ 
~ 0 . ~ r l  , t r  2 

+�89 max  If (ao,  a , ,  - a 2 ) - f ( a o ,  a,,  '~z)l 
0"0, ~r I ,O- 2 

This no rm is not characterized as easily as before. The unit ball has two 
unbounded directions, and the compact  convex set in the remaining six 
dimensions is bounded by 48 hyperplanes. We did not succeed in com- 
puting all the extreme points of this polytope,  so we have no explicit 
expression for I1[ id o/e @ PIll. However,  any expression IIl(id.,, @ P) f III .# | ~, 
with IIIflll .~, | = 1 is a lower bound on IIIelllcb. Taking  for f o n e  of the 28 
extreme points of the unit ball known to us, namely 

f = ( f ( +  + + )  ..... f ( - - - - - ) )  = (2 ,  1, 1, O, O, --1,  - - 1 , 0 )  

we find 

IIIP[II=b ~> IIlid.,, @Pill/> 13/12 (4.7) 

A 

4.2. Est imates  in Other  Norms 

In this section, which is not needed later in this paper,  we show how 
an estimate of  the form (4.2) fails if we use some criteria different from 
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oscillation norms to define contractivity of the factors. To us this is the 
main motivation for using oscillation norms in the first place. 

Since P,A = ~, "contractivity" has to be defined in a way ignoring this 
known fixed point. A natural approach is to consider contractivity in the 
quotient norm of d /C1 ,  i .e., 

I[AI[' := inf Ila-A$ll (4.8) 

Similarly, for P: d ~ d we define 

I[ell' :=sup{ [IPAII' I IIAII' ~ 1} (4.9) 

and call P "contractive" if IIP[['< 1. The following example shows what 
kind of estimate we can expect for this norm of a tensor product of trans- 
ition operators. 

Example 18. We consider finite classsical systems [ d  =~g(C2),/2 a 
finite set], for which any transition operator is of the form (2.2), 

Pf(og) = ~. p(co, q)f(q) 
q 

One easily checks that 

llPll' : �89 Z Ip(co, q) -p(oY,  r/) I (4.10) 
q 

From this formula and the positivity and normalization conditions for the 
tensor factors, one easily finds an estimate for tensor products, namely 

x?A Px ' <~x.A ~ IIPx[l' (4.11) 

Note that this estimate grows with the size of the region A, and becomes 
completely useless for infinite regions. Hence the question is whether this 
trivial estimate can be improved upon. 

As a simple counterexample, consider an Ising spin system (i.e., 
C2" = { +,  - }  at each site x), and all factors P,. - -P t  equal. Let X+ and Z -  
denote the functions which are 1 on the points + and - ,  respectively, and 
zero otherwise. P~ is characterized by the two probabilities 

P_+=P(+_, + ) = ( P i x + ) ( _ + )  
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From (4.10), liP] II ' =  Ip+ - p - I .  For  the products  X'J+ = Q.,-~AZ+ and 
pA = Qx~A Px over a finite set A of N sites we get IIz~i I1' = 1/2 and 

IIPAz'L II'>~ �89 I (PAx~) (+  " + )  - ( e ~ ' x ~ ) (  . . . . .  )1 

= ~  IpN+__pN[ /> �89 [p+__p_[  N m i n { p _ , p + } N - ,  

= N m i n { p - , P  + } N-] IIe~ll' IIZ~II' 

Picking both  p + and p _  close to 1, we see that  lIP A I1' may come arbitrarily 
close to N[IP~ I1'. /x 

Of  course, the bound (4.11) cannot  be improved upon in quan tum 
systems either, and the norm (4.10) remains useless in infinite quan tum 
systems as well. 

Another  alternative to oscillation norms,  which seems plausible at first 
sight, is to use the observat ion that  for norms of Hilbert  space contractions 
with a known fixed point the r ight-hand side of the analog of (4.1 1 ) can be 
improved to a supremum. This suggests the use of the Hilbert space norms 

IIAII" = (co(A'A) -Ico(A)12) ]/2 (4.12) 

on d ,  and the associated opera tor  norms for some state 09. It follows from 
the complete positivity of  transit ion operators  that  P is a contract ion with 
respect to this norm, provided that  co is invariant  under P (i.e., co o P = co). 
This may  not seem like a severe restriction, since we know that  any trans- 
ition opera tor  admits  an invariant state. We then define I[PII" as the best 
constant  in the inequality II P(A)I]',o ~< e [IA II',o. The inequality 

, ~ t 
liP] | P2[l~,| ~ max IIP+ll,o, 

holds, and it seems that  we achieved our goal of  finding a quanti ty that  
behaves well under composit ion.  However,  there are several drawbacks.  
First of  all, the invariant states co,. have to be explicitly known in order to 
compute  any norm. Second, the ergodicity statement one gets from the 
inequality ]LP[[" < 1 is rather weak: it allows no conclusion about  states of  
the infinite system which are singular with respect to co. Perhaps  the most  
severe restriction, however,  is that  the propagat ion  operators  introducing 
interaction into ihe QCA setting by mixing different cells also fail to be 
contractions with respect to this norm, so the approach  based on (4.12) 
seems to be limited to the trivial, noninteracting case. 

A similar criticism applies to the idea to use the spectral radius of P 
as an opera tor  on d / C ~ ,  denoted by a ' (P) .  Again, we have equality 
a ' (P]  | P 2 ) =  max;  a ' (P;) ,  but we have no control  over this quanti ty for a 
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product of two transition operators, which we need to introduce interac- 
tion (see the proof of Theorem 19). As an elementary example consider, as 
in Example 17, a classical system with two subcell types of one Ising spin 
each, with the transition operator 

P l =  (i 1 ~ 11 00 
0 1/2 1/2 

In a system consisting of two cells we choose the propagation map d(1;.)  
for the first subcell type to be the identity, and the map d(2;.)  for the 
second subcell type to be the flip. Then Pt contracts exponentially with rate 
1/2 to its invariant state, which is the pure state on the configuration 
( + - ) .  However, the total transition operator P has three invariant 
states. 

Other conceivable alternatives are the sup-oscillation norms introduced 
in (3.3), taken now not only as a way to define the oscillation norm in the 
subcells, but as a principle to construct the total oscillation norm. Defining 
the operator norm [[[. [[[cb in analogy to Definition 12, it is easy to show the 
analog of Theorem 13. However, this does not sumce to give an ergodicity 
criterion, since the estimate (3.6) fails for such norms, and consequently 
[[].[[[-Cauchy sequences need not converge in d .  A simple example 
demonstrating these claims is the sequence of averages of Ising spins over 
an increasing sequence of regions. The sup-oscillation norm of such 
averages goes to zero like the inverse number of sites in the average, but, 
of course, the sequence of averages is not convergent in the quasi-local 
algebra. 

5. A P P L I C A T I O N S  TO CELLULAR A U T O M A T A  

5.1. Ergodic i ty  

In order to apply the results of the previous section to interacting 
QCAs, we need tensorable oscillation norms on the algebras ~s  belonging 
to each subcell type using, say, operators 6~- -~s -~  ~. ,  o~e i  s. Then by 
Proposition 9 we have tensorable oscillation norms on each d ' ,  and con- 
sequently on the algebra ~r of the whole system. By Proposition 6 
ergodicity follows from the estimate [[]P[[[ < 1 for the total transition 
operator P. Thus we arrive at the following criterion. 



Ergodicity of Quantum Cellular Automata 991 

Theorem 19. Let a quantum cellular automaton be given according 
to Definition 1, and suppose that each ~s  is equipped with a tensorable 
oscillation norm. Then 

IIIPIII cb -- IIIe, III cb 

Consequently, if IIIP, IIIcb< l,  the QCA is ergodic, i.e., there is a unique 
P-invariant state p on d -~. 

Proo f  Let /~=Q.,.~_~P~ be the infinite tensor product of the 
operators P~ acting in each ~r separately. This is also the total transition 
operator of the QCA with the same Pl ,  but each d(s;. ) equal to the iden- 
tity. Consider also the automorphism D: sr z---, d -~' which takes ~ ' ~ )  
into ~,/Is;.,-)..,-. Then 

P = D P  

According to Theorem 13, IIIP~ IIlcb = IIIe, IIIcb. Moreover, since the oscilla- 
tion norm on B d~s:')'s is defined by the same operators d~ as in ~.,-.s, D is 

a II1" III-isometry, a n d  I[IOlll~b = 1. H e n c e  IIIPIII=~-- IIIOlll~lll=~-- IIIPI Ill,b- I 

Note that similarly to the noninteracting case, the criterion IIIP] IIlr < 1 
is a condition of "large disorder" which is satisfied as soon as P] is 
sufficiently close to a map of the form PI(A)=~o(A)~  [compare (4.4)]. 
A remarkable feature of this criterion is that it does not depend on the 
propagation maps d(s;. ) which distinguish an interacting QCA from a 
noninteracting one. 

One might expect from Lemma 15 that, with a suitable choice of 
oscillation norms, IIIP, IIl=b can be made equal to the largest modulus of 
eigenvalues of P~ apart from 1. However, this is not the case, since it is 
crucial for the proof of Theorem 19 that each oscillation operator 6~ acts 
in only one subcell &s, and so the propagation automorphism D becomes 
a II1" [ll-isometry. Clearly, this property cannot be expected of the eigen- 
projections of P]. Still, the second largest modulus of eigenvalues of P] is 
always a lower bound to IIIe] III cb. 

5.2. The  Class ica l  Case 

Since in the usual definition of PCAs no subcell decomposition is used, 
it is not obvious how the classical results ~2" 1) can be subsumed under 
Theorem 19. In this section we show how this can be done, pointing at the 
same time to a possible generalization of Definition 1. 

The basic operator P~ defining the one-site transition probability of a 
PCA [see (2.2)] maps the one-site algebra d into the tensor product 
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~7= d |  where n is the number of cells influencing the state in a single 
cell of the second generation, n is often finite, but we do not need this fact. 
We will construct a QCA whose one-site algebra is ~7, with all subcell 
algebras ~'~ isomorphic to d .  Note that all these algebras are now com- 
mutative, so the "Q" in QCA only refers to the fulfilment of Definition 1. 

The total PCA transition operator P [see (2.3)] can be decomposed 
into three factors: the first is simply the infinite tensor product P ~  of the 
operator P~ mapping d ze to ~Tz. The information about the cell y to 
which a subcell (x, s) in the latter algebra belongs in the next time step is 
encoded in propagation maps d(s;. ): of--,  ~ as before, i.e., y = d ( s ;  x). 
This defines an automorphism D of s~ 7z" as in the proof of Theorem 19. The 
final step is the sitewise application of the multiplication map M: s~ 7--* d ,  
defined by 

M(f ,  | ..- |  = f l  f ,  (5.1) 
i = 1  

Hence we get the factorization 

P = M'~'DP~ (5.2) 

where M ~ denotes the tensor product of the copies of M acting at each 
site. 

It is precisely the use of the multiplication map M, that is the specifi- 
cally classical element in this construction. M is also called the nth-order 
diagonal of the algebra ~r because, writing ,r162 ~ cg(Q) and ~ |  cg(Qn), 
as we may for an Abelian algebra, we have 

Mf(x)  = f ( x ,  x ..... x)  (5.3) 

Clearly, M is a *-homomorphism, and M(~ | 1 7 4 1 7 4 1 7 4  for all 
positions of the factor f i n  the tensor product. The existence of the diagonal 
characterizes Abelian algebras: if a homomorphism M of this description 
exists in a C*-algebra d ,  the commutativity of the tensor multiplication 
implies the commutativity of multiplication. The adjoint of the diagonal 
map is a "state duplication map" reproducing, from a state on d ,  n copies 
of ~r in the same state. Its nonexistence in the quantum case is the basis 
of "quantum cryptography" (see ref. 24 and references cited there). Of 
course, we can formally define M by (5.1), even in the noncommutative 
case. However, if d = J [ , / ,  n = 2 ,  and q~ is the unitary permutation 
operator exchanging the two factors, II M(~)[[ = n, i.e., II MI[/> 17. Hence, on 
an infinite-dimensional algebra, M is typically unbounded. But even in the 
finite-dimensional case, IIMII > 1 makes the definition of the infinite tensor 
product M z in (5.2) impossible. 
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It is now easy to modify (5.2) so that  we get a QCA in the sense of 
Definition 1. Its transition opera tor  is 

/3 := D P ~ M . ~  (5.4) 

One easily verifies that  this is the QCA with one-site transition opera tor  

/31: ~ g ~  
/31 = P l  M 

With J: . ~ / ~  ~7, defined as J f = . / |  1 | I ' -  ]1, we have M J  = id.~,, and hence 

p N  = M-~"/3Nj-~e" (5.5) 

for every power  N >/0, i.e., the PCA can be recovered completely from the 
QCA picture. 

For  estimating the contract ion rates of  these operators  we need the 
following lemma. 

L e m m a  20. Let d = ~ d ( f 2 )  be a finite dimensional Abelian 
C*-algebra with an oscillation norm defined by operators  J~ of the form 

J , f ( a )  = c ~ ( f ( a ~ ( a ) )  -- f ( a ) )  

where c, ~ • and a~: I2-- , /2.  Then, for every n, the nth-order  diagonal  M 
satisfies the estimate [NMlllcb ~< 1. 

Proo f .  .'~ca | 1 6 2  can be identified with the algebra of JCa-valued 
functions on 12 equipped with the norm [ Ig l l=sup ,  IIg(a)l[. Then, for 
. f~  " f f  d | '~r | and a' = a~(a) ,  the expression 

F k = . f ( a ' , . . . , a ' ,  a ..... a ) - - f ( a ' , . . . , a ' ,  a ..... a ) 
k t i m e s  , i  - -  k t i m e s  k - -  I t i m e s  n - -  k + I t i m e s  

is bounded in the norm of .//C,1 by 1c~-11 - II(id.a., |  Hence 

I[((id a ,~ |  = IG,[" [If(a ' ,  .... a ' ) - f ( a  ..... a)l[ 
n - -  I 

--levi- k~ Fk 
I t - - I  

-< ~ II(id,,,~| 
k = l  

Hence, after taking the supremum over a, summing over ~, and using the 
definition (3.13) of  the canonical oscillation norm on s~ ' |  we get (4.1) 
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with e = 1. The constant cannot be better than I, because M J  = id g ,  and, 
obviously IIIJflll = IIIflll for all f | 

Hence, from the factorization (5.5) we get IIIPHI=b ~< 
IIIM~'lllr IIIPlllcb IIIJ~lllob ~< IIIPlllcb- From (5.4) and because D is an oscilla- 
tion norm isometry, IIIPlllr IIIe~lllcb. Because P~=D-~PJ z, the last 
inequality is actually an equality. By Theorem 13, IIIP~lllob=lllP~lll~b. 
Summing up these estimates, we have 

IIIPlll~b ~ IIIPm~b = IIIP,IIl~b 

This is exactly the bound given in ref. 2. When comparing these results, 
however, note that Proposition 6 gives IIPN(A)-p(A)~II<<,2e'IIIAI[[, 
without the superfluous factor ( 1 -  e ) -  ~ present in ref. 2. 

Finally, we wish to point out that (5.4) also points to a possible 
generalization of the notion of QCA, which does not use subcell decom- 
positions: we only have to replace M by some completely positive unital 
operator from d |  d .  For such systems our method for obtaining 
oscillation norm estimates would apply unchanged, but they would no 
longer satisfy the condition of commuting ranges (see Section 2). In this 
sense the cells would no longer be "independently updated." 

5.3. Decay of Correlat ions in the Invariant  S ta te  

We assume now that the ergodicity criterion [lIP1 [[[r < 1 holds. What 
can be said about the unique invariant state p to which P contracts? It is 
clear that in the noninteracting case [i.e., d ( s ; . ) = i d ] ,  but also if 
PI(A) =co(A)~ (i.e, IIIP, IIIcb = 0 ) ,  ,O will be a product state. Therefore, it is 
reasonable to expect that if IIIP] IIIcb is small, we should obtain a state with 
good clustering properties. Moreover, in contrast to the ergodicity 
criterion, the propagation maps d(s;. ) should enter the estimate for the 
correlation functions. 

We will first describe the relevant geometric properties of the d(s;. ) 
For A c .~, we will set 

ds(A) = {d(s; x) ls~S, x~A} = ~  

This is the set of cells to which the interaction can spread from some site 
in A in one step. Similarly, we define d~(A) as the nth iterate of ds. For 
A1, A2 c .Lf we define the correlation distance as 

c(A], A2) max{ n ~ [~ [d~(A 1 ) O d](A2) = ~ }  
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i.e., as the last time step under which the two regions remain independent. 
When the maps d(s;. ) are translations, it is clear that for large separation 
parameters r, the correlation distance c(A1, A2 + r~) will asymptotically be 
proportional to r, but with a constant depending on the direction ~. In this 
sense the following proposition gives exponential clustering with a rate 
depending both on the direction and on IIIP1 IIIcb. 

Propos i t ion  21. Let a quantum cellular automaton be given 
according to Definition 1, and suppose that, with respect to some choice 
of tensorable oscillation norms on each ~s, the ergodicity criterion 
IIIe~ IIIcb< 1 is satisfied. Let p denote the unique state such that p o p = p .  
Let 

Atypica l=  @ d " ,  A2~o~ 'A2= @ d "~ 
x ~ A l  x•A2 

where A1 c~A2= ~ are disjoint finite subsets of ~ .  Then: 

1. Pk(Al)cda*~(AO for all k ~ .  

2. Pk(A 1 | 174  for all k<~c(Ai,A2). 

3. Ip(A1 |  

~< 2(llle~ IIIcb)c(a" A~)(IIIA, II1 IIa2 IL + IIA~ I1" ILIA2 III). 

Proof. The first two statements are obvious from Definition 1 for 
k = 1, and follow for other k by induction. Then using Proposition 6 and 
Theorem 19, we get, for all k<<, c(A~, A2), the estimate 

Ip(A, |  p(A1) p(A2)I 

= IIp(A~ |  "n --p(A~) p(A2) ~ II 

<~ IIp(A~ | A2) "O - pk(A l | A2)II + I[Pk(A1 | A2) -- Pk(Al) | pk(A2)l] 

+ IlPk(A ~) -p (A~)  "0 I1" IlPk(A2)ll + Ip(AI)I. IIpk(A2) --p(A2) ~ tl 

~< (lllP, Illeb) k ILIA1 | + (lllP, lllob) k [IA2II- IIIA,III 

+ (llle,lllebY IIA~II" Ilia2111 

where at the last step we used that IIpk(A2)II ~< IIA211. The result then 
follows from Eq.'(3.19). I 

APPENDIX. COMPLETE BOUNDEDNESS 

To motivate the necessity of considering complete positivity and 
complete boundedness of operators on noncommutative C*-algebras we 

822/82/3-4-25 
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consider a s tandard example: the opera tor  P: ~ ' ,  ~ s/t,, of transposit ion 
on the algebra of  n • n matrices. This preserves positivity and the identity 
element, and therefore seems to be a candidate for a transition operator.  
However,  positivity and the no rm bound IIPII ~< 1 both get lost if we con- 
sider the system as a subsystem of a larger one with observable algebra, say 
.//l,, | ~r162 Then (id.a,  |  takes the unitary flip opera tor  �9 = Z 0 '  [zJ) ( J / I  
into n times the one-dimensional projection p = ( l / n ) Z 0  I ii) (JJl. Hence 
Ilid~,/, | ell >f n, and P(~ - q~) = ~ - np is not positive, al though (~ - qs) is. 
Clearly, i d a ,  | P is no longer a transition operator ,  a l though there is no 
interaction with the "innocent bystander"  system described in ~ / , .  

In order to exclude such phenomena  one defines a linear opera tor  
P: ~r ~ :~ between C*-algebras to be completely positive ~2~ 25~ if id .a .  | P 
is positive for all n or, equivalently, 12~ if for any choice of  n-tuples 
al ..... a ,  e~r  and b~ ..... b,, e :~  the opera tor  ~.ijb*P(a*~aj)bj is positive. P is 
said to be completely bounded if I]id a . |  is bounded by a constant  
independent of  n. For  such operators  we define the completely bounded 
norm as 

IIPl[=b := sup Ilid a |  
t i e  

If IIPIIcb~< 1, P is called a complete contracthgn. The appearance of the 
matrix algebras J/l,, in these definitions is solely a mat ter  of  convenience: 
these definitions imply the corresponding statements with .//l,, replaced by 
an arbi trary C*-algebra J#  (see the p roof  of  L e m m a  8 for a very similar 
argument).  For  checking complete positivity or boundedness  it is often use- 
ful to consider ~r | d as the *-algebra of  17 x n-matrices with entries in 
d .  When :~ is a finite-dimensional algebra containing as direct summands  
at most  the k x k matrices, it suffices to verify complete positivity, or  to 
compute  I]Pllcb, in J / l , , |  with n = k .  t26j In particular,  all opera tors  
between finite-dimensional C*-algebras are completely bounded. 

Basic examples of  completely positive maps  are *-homomorphisms,  
maps  of the form A ~ V*A V, and all positive maps  with either d or 
Abelian, which includes all states. Completely  positive operators  are com- 
pletely bounded,  and when ~ e d and P is completely positive, we have 
Ile(~)ll = Ilell = IlPllcb/251. The fundamental  structure theorem for 
completely positive maps  is the Stinespring dilation theorem/27~ stating 
that every completely positive P: d - - * N ( ~ )  can be decomposed in an 
essentially unique way into P ( A ) =  V*z~(A)V, where re: d - - * ~ ( ~ " )  is a 
*-representation of d on a Hilbert  space oU, and V: ~ ---, oU is a bounded 
operator.  

Basic examples of complete contract ions are differences P = P §  P _  
of completely positive maps  with liP+ + P - I I  ~<1, and multiplication 
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operators A~--, M A  where [IMII ~< 1. Results analogous to the Stinespring 
dilation are also available for completely bounded maps. However, the 
uniqueness is typically lost. Thus any complete contraction P: d ~ ~(~r 
with d ~ 1 can be decomposed as P ( A ) =  V*~rc(A)V2, with n a *-represen- 
tation of ~r and V~ and V 2 isometrics. Essentially the same statement is 
that every complete contraction P: d ~ ~(~f~) can be realized as the off- 
diagonal corner of a completely positive map, ~2s~ i.e., there is a unit-preser- 
ving completely positive map P: ~ ' 2  | d --* J#2 | ~(~f~) such that 

o))(~ 
Every completely bounded operator P: d ~ ~(~f ' )  is a linear combination of 
completely positive ones. If, moreover, P is hermitian [i.e., P ( A * ) =  P(A)*] ,  
one can find a completely positive P +  with liP+ Ilcb = I IPi lcb such that 
P+  ___P are completely positive. 128'2sl The same statement holds when 
~ ( ~ )  is replaced by an arbitrary injective C*-algebra, c28~ but fails in 
general. Since finite-dimensional algebras are injective, this covers the 
applications of  this result in connection with Lemma 14. 
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